
HIGH PERFORMANCE COMPUTING
USING GPGPU

FOR RADAR APPLICATIONS

Viswam Gampala1 (visgam@yahoo.co.in), Akshay BM1, A Vengadarajan1, PS Avadhani2
1. Electronics & Radar Development Establishment, DRDO, C.V Raman Nagar, Bangalore-560093

2. Professor in Dept of Comp. Science and Systems Engg, AndhraUniversity,Vishakhapatnam-530001

Abstract—Modern Radar Sensor systems are being deployed
to carry out multi tasking for detection and tracking of
several objects simultaneously. Active Electronically
steered Phased array technology is the key element being
utilized for design and development of these modern radar
systems. These are used for carrying out efficient and
effective weapon system control functions for Air Defence
missions against Aircrafts and Missiles. The target data
provided by these radars play pivotal role in taking mission
critical decisions in time and improve the efficacy of the
overall system for better kill. However, as against
conventional old generation radar systems, these modern
radars are required to process, analyse and classify the kind
of threat for better system vulnerability assessment and
prioritization.
A radar system receives digitized video data from receiver(s)
and carries out a set of highly compute intensive Data /
Signal Processing activities.
The GPGPU provides a simple and easily implementable
parallel software architecture paradigm using general
purpose programming languages like C / C++. The entire
data / signal processing task can be realized as a sequence
of software activities taking the advantage of very high
throughput possible with the GPUs.
This paper brings out a generic design for architecting a
GPGPU based Signal / Data processing system for current
day Radar systems Also it presents rational for proposing
such a design, the data structures that are scalable for multi-
channel handling with minimal / no modifications and
sample implementation of few algorithms. A sample
implementation is carried out using NVidia GPU with
CUDA constructs on a commercial ASUS 2U Server with
64 GB RAM and performance measurements carried out.

Keywords - Signal Processing, Radar, GPU, High
Performance Computing, Real-time Processing,
Waveforms, MTI, PC, FFT, IFFT, Device / Host
Memory.

I. INTRODUCTION
A typical radar system receives digitized video data from

receiver(s) and carries out a set of highly compute intensive
Data / Signal Processing activities. The data is received
from several tens of channels (at times even hundreds of
channels) in real-time and have to complete the processing
activity in few milliseconds for all these channels.
Processing involves frequency domain analysis, Beam
formation, MTI, Coherent processing in Range and / or
Doppler etc. Typically, these processes are data centric and
are parallel in nature with inherent SIMD leniency. The
order of complexity in hardware and software
implementation is very high in such systems, posing major
problem for implementation, maintenance and sustenance
through-out the life cycle of the system. Advances in
computing systems have reduced this complexity
dramatically in the past few years by means of using
dedicated FPGA based architectures, General Purpose
Graphic Processor Units (GPGPU) etc. Several hundreds
(even thousands) of GFLOPS throughput can be achieved
with the current day commercially available hardware at
very low costs. This paper brings out a generic design for
architecting a GPGPU based Data / Signal processing
system for current day Radar systems.

Definitions :

a. Sample / Range Cell : Digital sample from ADC of
Radar receiver. Contains a In-phase component and
Quadrature component (I, Q). Represents the signal
vector for a given range cell of the radar

b. Pulse : The radar operation is carried out generally
in pulsed form. Each pulse of EM energy is
transmitted for specific period of time (may few tens
of micro seconds) and echo(s) received from target(s)
to identify presence / absence of a target of interest.

c. Burst : A radar generates a set of pulse trains
coherently, in order to extract parameters of targets.
Each set of pulse train is termed as a burst.

II. DATA RECEPTION

The data arriving from various receiver channels in digital
form in real-time is a stream of baseband samples at a given
bandwidth. This bandwidth typically depends on the radar
functions, applications and the purpose for which the radar
is being used. Further, the data is typically in the form of I,
Q samples in order to preserve the phase of the signal

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013

which is essential for some of the signal processing
algorithms to give proper results through interpretation. The
data may be received in one of several possible interfaces
using protocols like Serial FPDP (SFPDP), Ethernet or
parallel interfaces. In a typical modern signal processing
systems, it is typically a high speed Ethernet. The Signal
processing system is also a high speed parallel processing
computing system with interfaces to receive this data.
Present day hardware is available with 10 Gbps Ethernet
(one ore more interfaces) interfaces with PCIe as the high
speed interconnect between the processing host and this
interface.

The data thus arriving is received into the computing
system for further processing. Each channel consisting of I,
Q in a two’s complement signed 16 bit integer is the typical
data format on arrival. Each sample thus is of 4 bytes. A
radar with 5 MHz bandwidth, and four channels (sum, delta
Azimuth, delta Elevation and SLB), the total data to be
handled by the interfaces would be in the order of 80 MB
per second (4 x 5 MHz x 4 = 80 MB). The PCIe 2.0 8x, a
common interface on many modern computer platforms can
handle upto 4 GB/s of data without any problem. Therefore,
a simple PC / Workstation with PCIe 8x may be more than
adequate for handling the data for signal processing.

The data is received from the receiver in terms of pulses,
one at a time, each having certain number of samples
(named as range gates). The signal processing has to be
carried out for a group of pulses, typically called a burst, all
synchronized with respect to time and coherent in nature.
As the data is arriving in discreet form i.e. data for each
pulse arrives at different times, it will be required to format
the data in memory after reception. This would help in
parallelizing the data processing algorithms. Also, in
conventional signal processing systems using hardware and
/ or CPU based, each pulse data is processed as and when it
arrives in pipeline manner, in order to reduce latencies
involved if waiting takes place till all the pulse data is
arrived. As it will be seen shortly, it is strongly advised to
carry out signal processing after receiving all the pulse data
when employing GPGPUs for processing than immediate
processing as a deviation from conventional methods.

III. GPGPU AND CUDA

The General Purpose Graphical Processing Unit (GPGPU)
is a highly parallel computing engine with hundreds (even
thousands) of cores available for handling hardcore
computations in single precession, double precession
floating point. Originally, the GPUs are built for handling
the voluminous graphical computations involved in
rendering complex 3D graphic images. Several thousands
of transformations (typically floating point multiplications,
additions) are to be carried out for displaying a meaningful
image on screen in real-time. Advances in this have helped
in using the computational power for general purpose
applications such as fluid dynamics, simulations, signal
processing, image processing which are inherently parallel
in nature.

The speciality of these GPUs is to simultaneously fetch data
for more than one core at a time using wide data bus

interfaces available and supply the same for parallel
computations by all the available cores as a batch. Though
the data is stored in a conventional memory like GDDR5,
as the interface is in the order of 256 bits (some-times even
upto 384 bits), the system can reach bandwidths beyond
100 GB/s internal for processing. Also, GPUs have
hardware thread scheduling mechanisms which will enable
very fast context switches reducing the idle times in the
processing pipelines.

Most popular GPGPUs are available from AMD and from
NVIDIA. The programming model for these GPUs is
different from CPU programming. The work carried out by
these two vendors in releasing GPGPUs at affordable price
lines and ease of programming is appreciable. Popular
programming models for these GPUs are available in two
flavours viz. Open CL and CUDA. The NVidia GPU can be
programmed in both the models, whereas, AMD GPUs can
be programmed only in OpenCL. The authors of this paper
have worked extensively in CUDA and experimental results
were analysed using the same. Though, programming
OpenCL is also equally of similar complexity, CUDA was
found to be more friendly by the authors (it’s only a matter
of choice).

Fig 1 : A generic hardware platform with one GPU card

and interfacing to radar receiver(s)

Different varieties of GPU boards are available for using

as Signal Processing hardware. Boards with 128 cores, 256
cores, 440 cores and 1510 cores are available from NVIDIA.
These boards can be housed in general purpose PC /
workstations with required power mounted on PCIe 2.0 8x /
16x slots. Depending on the response times required /
aimed at, one can choose the appropriate hardware. Even
the low cost 128 core GPU may be adequate for a four
channel moderate radar signal processing application.

One more advantage that can be kept in view that the
application is completely scalable in the sense that, if the
application software is developed and tested on a 128 core
GPU, same can be executed on another GPU with more
cores with absolutely no code changes / modifications. This
inherent scalability nature makes the GPU usage for signal

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 2 10-14 December 2013

processing more promising, as the same software can be run
(if designed properly) for a higher functionality (more
channels, more samples etc.) radar with minimal / no
changes.

IV. GPU PROGRAMMING

The GPU hardware is housed as a slave board in a host
computer. The data received from various receiver channels
is initially available in CPU memory (called host memory).
The GPU, typically, cannot access this memory directly (in
some latest GPUs though it is possible with less bandwidth).
The GPU has a local memory available (called device
memory) from where all the data and instruction fetches are
carried out for any meaningful computationally intensive
problem solving applications. Therefore, in order to carry
out any computation using GPUs, it is first required to
make the data available in the device memory by copying
all the data from the host memory.

In a typical radar burst, data is received for each pulse and
stored in the CPU host memory. It may be possible to copy
each of these pulse data into device memory as and when it
arrives using memcpy functions (these functions are
supplied by GPU drivers and uses DMA features) available
for this purpose. However, it may not be optimal, as each
pulse data movement needs as many function calls in small
discrete quantities and for all the channels. An alternate
approach is to collect the data for all pulses and all channels,
format into a linear data structure that would be useful final
processing by GPU and transfer all the data in single
memcpy (with DMA). Even if one transfers data for each
pulse individually to device memory, it would be of not
much use as the parallelism of GPU cannot be effectively
used on one pulse data at a time. As a matter of fact, the
authors, have found through experiments that it would be
less efficient and performance degrades significantly.

Following data structure (C Struct) represents typical I, Q
data and it’s layout in memory :

Struct tagCOMPLEX {
Float I,

 Q;

};

Struct tagPULSE {
 tagCOMPLEX sSample[1024];
}

Struct tagCHANNEL {

tagPULSE sPulses[256];
};

Fig 2 presents the memory layout representation in Host
and Device memory for one channel.

Fig.2 : Memory layout of I,Q data in Host and device memory

After transferring the data to the device memory, the
algorithms need to be executed using the parallel
computation paradigm of GPUs. This, however, needs a
thorough understanding of the problem and converting the
steps / identifying the inherent parallelism in the required
processes. Apply these identified parallelisation unto
solving the problem is the most crucial step, though it is
simple if properly analysed.

V. RADAR SIGNAL PROCESSING USING GPU
PARALLELISATION

In a Radar, signal processing steps are carried out at pulse
level and also at burst level. Pulse compression process has
to be carried out for each pulse. Similarly, MTI, CFAR in
range etc., also to be carried out at pulse level. In case of
Doppler Processing (an FFT on each range gate across
pulses) has to be carried out at burst level.

Fig.3 : Steps in Radar Signal Processing using GPU

As can be visualized from the inherent parallelism of these
processes, if the data is available in the device memory,
GPU can be programmed / scheduled to process all the
pulse data (of all the channels) in parallel i.e. when Pulse
compression is being carried out for first pulse, other pulses
also can be subjected to the same process in parallel. Also,
MTI can be carried out for first three pulses (two pulse
cancellation), when other pulses is scheduled in parallel.
The natural parallelism defined through CUDA paradigm
and GPU capabilities lends itself to highly parallel code,

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 3 10-14 December 2013

resulting in hitherto impossible programming constructs for
solving computationally intensive radar signal processing
problems in minimal possible time. Also, as brought out
earlier, the applications are scalable both from higher
capable GPUs usage and more number of radar channel
processing with minimum / no modifications for the
implementations. Many other algorithms can also
implemented in similar way.

After completing the processing using GPU, certain non
parallel steps / algorithms may have to be carried out in
CPU (like ambiguity resolution, sorting the plots based on
signal strength, data packet formatting, dispatch to data
processor etc.). Thus, the processed results have to be
copied back to CPU memory using memcpy (with DMA).
Further, these results may be displayed using MATLAB
like applications at various intermediate steps.

Fig 3 presents steps involved for radar signal processing
applications using GPUs.

VI. OPTIMIZATIONS
The signal processing software being highly compute
intensive, it would be more beneficial to utilize certain
optimization features during software development.
Following are more relevant for such High Performance
software development :

a. Data arrived from receivers to be stored in page locked
memory. Though, this will reduce the physical memory
available in the system for other processes, this should not
be a concern, as this may be the only application being
executed when the system is configured for Signal
Processing application. Also, in the current systems, RAM
is literally unlimited and is very cheap to expand, if
required.

b. Reduce number of memory copies (DMA transfers)
from/to host/device memory. Less number of Large blocks
of memory transfer would be more efficient than number of
smaller block transfers.

c. Memory alignment (called coalescence) would
significantly improve the performance due to decrease in
memory access conflicts.

d. Utilize maximum registers, shared memory on the device
to improve performance.

e. Complete as much of computation on device as possible
before transferring the results to host memory. Every
transfer on PCIe bus is relatively expensive compared to
internal device memory transfers. Therefore, reduce
unnecessary data transfers between Host / Device.

f. Single precision floating point operations are much faster
than integer operations and double precision (in older
generation GPUs). Maximize throughput by using floating
point engines.

VII. RESULTS
A sample system has been successfully implemented in the
laboratory setup and complete process established. A
simulation system for simulating the radar echo at baseband
I, Q level was also implemented, as if the data is received
from radar receivers in real-time. Algorithms for Pulse
Compression (PC) and MTI have been implemented using
CUDA programming constructs and parallel kernels for the
sample platform using NVidia GPU with 448 cores. Graphs
in Fig 4 present some of the results obtained. Also, the
same PC algorithm was implemented and executed using
MATLAB on a conventional Intel Xeon CPU (8 cores)
without using GPUs (given in Table.1). It may be seen that
the time taken for PC is significantly low on GPU
compared to CPU for different cases. It may be noticed that,
the time taken for varying number of pulses and for
different number of channels is not linear. This is because
of the huge computation power that is available, which we
are not able to load fully especially in case of less than 16
channels.

Fig.4 : Performance of PC on GPU for varying number of
channels and pulses (each with 1024 point FFT)

GPU (ms)
(Tesla GPU – 448 core)

MATLAB (ms)
(Intel Xeon – 8 cores)

PC 1.5 60

MTI 0.2 8

Table.1 : Comparison of timings on GPU Vs CPU (1024 point
FFT)

 CONCLUSIONS

The Radar Signal Processing is highly demanding real-time
software both in terms of computations and response times.
More and more sophisticated algorithms are being proposed
to get the precise target characteristics particularly in a
cluttered target environment for effective use of data during
engagement sequences. The GPGPU provides a very stable
and implementable platform with high scalability. As it can
be seen from the results, the GPGPU outperforms the
conventional CPU implementations and also has better
software / Algorithm control as compared to customized
FPGA implementations. Multiple GPGPUs can be used as a
cluster and throughput of several TFLOPS can easily be
achieved, making it highly promising.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 4 10-14 December 2013

BIO DATA OF AUTHORS

Bibliography :

1. NVidia Team, "CUDA Programmer's reference

manual vesrion 4.2", NVIDIA, May '2012

2. Khronos Team, "OpenCL 1.2 Programmer's reference

manual", Khronos Group, Nov '2011

3. Mark A Richards, "Fundamentals of Radar Signal

Processing", Mc GrawHill, May '2005

4. Fave A Briggs & Kai Hwang, "Computer Architecture

and Parallel Processing", McGrawHill, Jul '2012

5. David B Kirk & Wen-mei W. Hwu, "Programming

Massively Parallel Processors", Morgan Kaufmann, Dec
'2012

G.Viswam, Sc’G’, has joined LRDE,
DRDO in 1989. He received his
M.Sc. (Computer Science) from
Andhra University in 1989 and
M.Tech. (Computer Engg) in 1997
from IIT Madras. He has expertise in
software design and development and
system integration. His fields of
interest are Real time systems,
System engineering, integration of
large scale systems and High
performance computing.

Mr Akshay, Sc ’C’ has joined LRDE
in 2009. He has a B.Tech (Information
Technology) from NIT, Suratkal,
India. He has worked for design and
development of high performance
real-time software for radar
applications. He has good experience
in C, C++ and CUDA programming.

Dr. A Vengadarajan is working as a
Scientist in DRDO since 1986.
Received B.E degree in Electronics &
Communication Engineering and
M.Tech & Ph.D in Microwave
Engineering. His areas of interest are
Radar Signal Processing, Array
Processing, STAP and System
Engineering.

Dr. PS Avadhani, is Professor of
Computer Science and Systems
Engineering in Andhra University
since 1986. He has taught Computer
science subjects to several Graduate
and Post graduate classes over the
years and has guided PhD scholars in
the department. His areas of interest
are Parallel Processing, Cryptography
and Data structures

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 5 10-14 December 2013

	Index
	Session 10
	Author Index

